Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ultramicroscopy ; 250: 113750, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178606

RESUMO

X-ray photoelectron diffraction (XPD) is a powerful technique that yields detailed structural information of solids and thin films that complements electronic structure measurements. Among the strongholds of XPD we can identify dopant sites, track structural phase transitions, and perform holographic reconstruction. High-resolution imaging of kll-distributions (momentum microscopy) presents a new approach to core-level photoemission. It yields full-field kx-ky XPD patterns with unprecedented acquisition speed and richness in details. Here, we show that beyond the pure diffraction information, XPD patterns exhibit pronounced circular dichroism in the angular distribution (CDAD) with asymmetries up to 80%, alongside with rapid variations on a small kll-scale (0.1 Å-1). Measurements with circularly-polarized hard X-rays (hν = 6 keV) for a number of core levels, including Si, Ge, Mo and W, prove that core-level CDAD is a general phenomenon that is independent of atomic number. The fine structure in CDAD is more pronounced compared to the corresponding intensity patterns. Additionally, they obey the same symmetry rules as found for atomic and molecular species, and valence bands. The CD is antisymmetric with respect to the mirror planes of the crystal, whose signatures are sharp zero lines. Calculations using both the Bloch-wave approach and one-step photoemission reveal the origin of the fine structure that represents the signature of Kikuchi diffraction. To disentangle the roles of photoexcitation and diffraction, XPD has been implemented into the Munich SPRKKR package to unify the one-step model of photoemission and multiple scattering theory.

2.
J Phys Condens Matter ; 34(42)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35940170

RESUMO

Using momentum microscopy with sub-µm spatial resolution, allowing momentum resolved photoemission on individual antiferromagnetic domains, we observe an asymmetry in the electronic band structure,E(k)≠E(-k), in Mn2Au. This broken band structure parity originates from the combined time and parity symmetry,PT, of the antiferromagnetic order of the Mn moments, in connection with spin-orbit coupling. The spin-orbit interaction couples the broken parity to the Néel order parameter direction. We demonstrate a novel tool to image the Néel vector direction,N, by combining spatially resolved momentum microscopy withab-initiocalculations that correlate the broken parity with the vectorN.

3.
J Synchrotron Radiat ; 28(Pt 6): 1891-1908, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738944

RESUMO

The small time gaps of synchrotron radiation in conventional multi-bunch mode (100-500 MHz) or laser-based sources with high pulse rate (∼80 MHz) are prohibitive for time-of-flight (ToF) based photoelectron spectroscopy. Detectors with time resolution in the 100 ps range yield only 20-100 resolved time slices within the small time gap. Here we present two techniques of implementing efficient ToF recording at sources with high repetition rate. A fast electron-optical beam blanking unit with GHz bandwidth, integrated in a photoelectron momentum microscope, allows electron-optical `pulse-picking' with any desired repetition period. Aberration-free momentum distributions have been recorded at reduced pulse periods of 5 MHz (at MAX II) and 1.25 MHz (at BESSY II). The approach is compared with two alternative solutions: a bandpass pre-filter (here a hemispherical analyzer) or a parasitic four-bunch island-orbit pulse train, coexisting with the multi-bunch pattern on the main orbit. Chopping in the time domain or bandpass pre-selection in the energy domain can both enable efficient ToF spectroscopy and photoelectron momentum microscopy at 100-500 MHz synchrotrons, highly repetitive lasers or cavity-enhanced high-harmonic sources. The high photon flux of a UV-laser (80 MHz, <1 meV bandwidth) facilitates momentum microscopy with an energy resolution of 4.2 meV and an analyzed region-of-interest (ROI) down to <800 nm. In this novel approach to `sub-µm-ARPES' the ROI is defined by a small field aperture in an intermediate Gaussian image, regardless of the size of the photon spot.

4.
Rev Sci Instrum ; 92(5): 053703, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243258

RESUMO

The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the e-e Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons. The suppression of space-charge effects scales with the ratio of the photoelectron velocities of fast and slow electrons. Fields in the range from -20 to -1100 V/mm for Ekin = 100 eV to 4 keV direct secondaries and pump-induced slow electrons back to the sample surface. Ray tracing simulations reveal that this happens within the first 40 to 3 µm above the sample surface for Ekin = 100 eV to 4 keV. An optimized front-lens design allows switching between the conventional accelerating and the new retarding mode. Time-resolved experiments at Ekin = 107 eV using fs extreme ultraviolet probe pulses from the free-electron laser FLASH reveal that the width of the Fermi edge increases by just 30 meV at an incident pump fluence of 22 mJ/cm2 (retarding field -21 V/mm). For an accelerating field of +2 kV/mm and a pump fluence of only 5 mJ/cm2, it increases by 0.5 eV (pump wavelength 1030 nm). At the given conditions, the suppression mode permits increasing the slow-electron yield by three to four orders of magnitude. The feasibility of the method at high energies is demonstrated without a pump beam at Ekin = 3830 eV using hard x rays from the storage ring PETRA III. The approach opens up a previously inaccessible regime of pump fluences for photoemission experiments.

5.
J Phys Condens Matter ; 33(20)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33561846

RESUMO

The heavy-fermion behavior in intermetallic compounds manifests itself in a quenching of local magnetic moments by developing Kondo spin-singlet many-body states combined with a drastic increase of the effective mass of conduction electrons, which occurs below the lattice Kondo temperatureTK. This behavior is caused by interactions between the strongly localized 4felectrons and itinerant electrons. A controversially discussed question in this context is how the localized electronic states contribute to the Fermi surface upon changing the temperature. One expects that hybridization between the local moments and the itinerant electrons leads to a transition from a small Fermi surface in a non-coherent regime at high temperatures to a large Fermi surface once the coherent Kondo lattice regime is realized belowTK. We demonstrate, using hard x-ray angle-resolved photoemission spectroscopy that the electronic structure of the prototypical heavy fermion compound YbRh2Si2changes with temperature between 100 and 200 K, i.e. far above the Kondo temperature,TK= 25 K, of this system. Our results suggest a transition from a small to a large Fermi surface with decreasing temperature. This result is inconsistent with the prediction of the dynamical mean-field periodic Anderson model and supports the idea of an independent energy scale governing the change of band dispersion.

6.
ACS Nano ; 14(12): 17554-17564, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33236903

RESUMO

The coupling of real and momentum space is utilized to tailor electronic properties of the collinear metallic antiferromagnet Mn2Au by aligning the real space Néel vector indicating the direction of the staggered magnetization. Pulsed magnetic fields of 60 T were used to orient the sublattice magnetizations of capped epitaxial Mn2Au(001) thin films perpendicular to the applied field direction by a spin-flop transition. The electronic structure and its corresponding changes were investigated by angular-resolved photoemission spectroscopy with photon energies in the vacuum-ultraviolet, soft, and hard X-ray range. The results reveal an energetic rearrangement of conduction electrons propagating perpendicular to the Néel vector. They confirm previous predictions on the origin of the Néel spin-orbit torque and anisotropic magnetoresistance in Mn2Au and reflect the combined antiferromagnetic and spin-orbit interaction in this compound leading to inversion symmetry breaking.

7.
Ultramicroscopy ; 183: 19-29, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28705441

RESUMO

The combination of momentum microscopy (high resolution imaging of the Fourier plane) with an imaging spin filter has recently set a benchmark in k-resolution and spin-detection efficiency. Here we show that the degree of parallelization can be further increased by time-of-flight energy recording. On the quest towards maximum information (in earlier work termed "complete" photoemission experiment) we have studied the prototypical high-Z fcc metal iridium. Large partial bandgaps and strong spin-orbit interaction lead to a sequence of spin-polarized surface resonances. Soft X-rays give access to the 4D spectral density function ρ (EB,kx,ky,kz) weighted by the photoemission cross section. The Fermi surface and all other energy isosurfaces, Fermi velocity distribution vF(kF), electron or hole conductivity, effective mass and inner potential can be obtained from the multi-dimensional array ρ by simple algorithms. Polarized light reveals the linear and circular dichroism texture in a simple manner and an imaging spin filter exposes the spin texture. One-step photoemission calculations are in fair agreement with experiment. Comparison of the Bloch spectral function with photoemission calculations uncovers that the observed high spin polarization of photoelectrons from bulk bands originates from the photoemission step and is not present in the initial state.

8.
J Phys Condens Matter ; 29(25): 255001, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28537224

RESUMO

Spin-momentum locking of surface states has attracted great interest in recent years due to envisioned technological applications in the field of spintronics. Normal metal surfaces like W(1 1 0) and Ir(1 1 1) show surface states with energy dispersions and spin-polarization textures, which are reminiscent of topologically non-trivial surface states. In order to understand this phenomenon the connection of bulk and surface states has to be explored. Using time-of-flight momentum microscopy with soft x-ray excitation, we present a comprehensive analysis of the bulk bands of W and Ir. Surface states are determined by the same method with photon excitation in the vacuum ultraviolet region. The superposition of both spectral densities reveals the hosting of surface states within the gap structure of bulk bands projected on the surface Brillouin zone. Quantitative differences in the extension of experimental and theoretical local band gaps indicate an underestimation of electron correlation effects in theory.

9.
Nat Mater ; 16(6): 615-621, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28272500

RESUMO

We performed a full mapping of the bulk electronic structure including the Fermi surface and Fermi-velocity distribution vF(kF) of tungsten. The 4D spectral function ρ(EB; k) in the entire bulk Brillouin zone and 6 eV binding-energy (EB) interval was acquired in ∼3 h thanks to a new multidimensional photoemission data-recording technique (combining full-field k-microscopy with time-of-flight parallel energy recording) and the high brilliance of the soft X-rays used. A direct comparison of bulk and surface spectral functions (taken at low photon energies) reveals a time-reversal-invariant surface state in a local bandgap in the (110)-projected bulk band structure. The surface state connects hole and electron pockets that would otherwise be separated by an indirect local bandgap. We confirmed its Dirac-like spin texture by spin-filtered momentum imaging. The measured 4D data array enables extraction of the 3D dispersion of all bands, all energy isosurfaces, electron velocities, hole or electron conductivity, effective mass and inner potential by simple algorithms without approximations. The high-Z bcc metals with large spin-orbit-induced bandgaps are discussed as candidates for topologically non-trivial surface states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...